Photonic Integrated Circuits for Optical Logic Applications
نویسندگان
چکیده
The optical logic unit cell is the photonic analog to transistor-transistor logic in electronic devices. Active devices such as InP-based semiconductor optical amplifiers (SOA) emitting at 1550 nm are vertically integrated with passive waveguides using the asymmetric twin waveguide technique and the SOAs are placed in a Mach-Zehnder interferometer (MZI) configuration. By sending in high-intensity pulses, the gain characteristics, phase-shifting, and refractive indices of the SOA can be altered, creating constructive or deconstructive interference at the MZI output. Boolean logic and wavelength conversion can be achieved using this technique, building blocks for optical switching and signal regeneration. The fabrication of these devices is complex and the fabrication of two generations of devices is described in this thesis, including optimization of the mask design, photolithography, etching, and backside processing techniques. Testing and characterization of the active and passive components is also reported, confirming gain and emission at 1550 nm for the SOAs, as well as verifying evanescent coupling between the active and passive waveguides. In addition to the vertical integration of photonic waveguides, Esaki tunnel junctions are investigated for vertical electronic integration. Quantum dot formation and growth via molecular beam epitaxy is investigated for emission at the technologically important wavelength of 1310 nm. The effect of indium incorporation on tunnel junctions is investigated. The tunnel junctions are used to epitaxially link multiple quantum dot active regions in series and lasers are designed, fabricated, and tested. Thesis Supervisor: Leslie A. Kolodziejski Title: Professor of Electrical Engineering
منابع مشابه
Low Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure
Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...
متن کاملUltra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators
In this paper, a photonic crystal structure for comparing two bits has beenproposed. This structure includes four resonant rings and some nonlinear rods. Thenonlinear rods used inside the resonant rings were made of a doped glass whose linearand nonlinear refractive indices are 1.4 and 10-14 m2/W, respectively. Using Kerr effect,optical waves are guided toward the correc...
متن کاملNovel Design of Optical Channel Drop Filter Based on Photonic Crystal Ring Resonators
In this paper, a new design of optical channel drop filter based on two- dimensional photonic crystal ring resonators with triangular lattice is proposed. The rods of this structure is silicon with the refractive index 3.46 and the surrounding environment is air with the refractive index of 1.The widest photonic band gap obtained is for filling ratio of r/a = 0.2. The filter’s transmission spec...
متن کاملNovel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter
Photonic crystal ring resonators (PCRRs) are traditional structures fordesigning optical channel drop filters. In this paper, Photonic crystal channel drop filter(CDFs) with a new configuration of ring resonator is presented. The structure is made ofa square lattice of silicon rods with the refractive index nsi=3. 4 which are perforated inair with refractive index nair=1. Calculations of band s...
متن کاملPhotonic Crystal-Based Polarization Converter for Optical Communication Applications
A photonic crystal-based TE to TM polarization converter for integrated optical communication is proposed in this paper. The photonic crystal consists of air circular-holes in slab waveguide. The radius of holes are determined to be 291nm having lattice constant of 640nm using the gap map and band diagram. The polarization converter is composed of an InGaAsP triangular-shaped waveguide on SiO2 ...
متن کاملLarge-Scale Integrated Silicon Photonic Circuits for Optical Phased Arrays
We present several optical phased arrays enabled by state-of-the-art large-scale silicon photonic integration which could find potential applications in optical switching, optical communications, light detection and ranging, and holography. OCIS codes: (130.3120) Integrated Optical Devices; (250.5300) Photonic Integrated Circuits.
متن کامل